c语言编程笔录

首页 >   > 笔记大全

笔记大全

Python中的贝叶斯分析是什么

更新时间:2024-01-22

第一段

贝叶斯分析是一种基于贝叶斯定理的统计分析方法,主要用于数据分析、机器学习、人工智能等领域。其核心思想是从观察到的数据推断未知参数的概率分布,以此作为对未来事件的预测。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import binom, beta

# Binomial distribution parameters
n = 100
p = 0.2

# Prior distribution parameters
a = 2
b = 2

# Generate data
data = binom.rvs(n, p, size=100)

# Posterior distribution parameters
post_a = a + np.sum(data)
post_b = b + n - np.sum(data)

# Plot prior and posterior distributions
x = np.linspace(0, 1, 100)
prior_dist = beta.pdf(x, a, b)
post_dist = beta.pdf(x, post_a, post_b)

plt.plot(x, prior_dist, label='Prior')
plt.plot(x, post_dist, label='Posterior')
plt.xlabel('p')
plt.ylabel('Density')
plt.legend()
plt.show()

第二段

贝叶斯分析的应用场景有很多,其中最常见的是分类、回归、聚类等任务。比如说,我们可以利用朴素贝叶斯分类器来区分垃圾邮件和正常邮件,其思路是从已知的垃圾邮件和正常邮件中,推断出一个概率分布函数,以此来对新的邮件进行分类。

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report

# Load data
categories = ['alt.atheism', 'talk.religion.misc']
train = fetch_20newsgroups(subset='train', categories=categories)
test = fetch_20newsgroups(subset='test', categories=categories)

# Vectorize data
vectorizer = CountVectorizer()
train_data = vectorizer.fit_transform(train.data)
test_data = vectorizer.transform(test.data)

# Fit Naive Bayes classifier
clf = MultinomialNB()
clf.fit(train_data, train.target)

# Evaluate classifier
predictions = clf.predict(test_data)
print(classification_report(test.target, predictions))

第三段

贝叶斯分析在多元统计分析和深度学习中也得到了广泛应用。其中,在贝叶斯神经网络中,我们可以利用先验知识来调整网络参数,以此提高模型的泛化性能。

import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.distributions import Normal

# Load and preprocess data
train_loader = DataLoader(...)
test_loader = DataLoader(...)

# Define model
class BayesianANN(torch.nn.Module):
    def __init__(self):
        super(BayesianANN, self).__init__()
        self.fc1 = torch.nn.Linear(28*28, 128)
        self.fc2 = torch.nn.Linear(128, 64)
        self.fc3 = torch.nn.Linear(64, 10)
        self.sigma = torch.nn.Parameter(torch.FloatTensor([1.0]))

    def forward(self, x):
        x = x.view(-1, 28*28)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def log_prior(self):
        return torch.sum(Normal(0, 1).log_prob(self.fc1.weight) \
                        + Normal(0, 1).log_prob(self.fc2.weight) \
                        + Normal(0, 1).log_prob(self.fc3.weight) \
                        + Normal(0, 1).log_prob(self.fc1.bias) \
                        + Normal(0, 1).log_prob(self.fc2.bias) \
                        + Normal(0, 1).log_prob(self.fc3.bias))

    def log_variational_posterior(self):
        return torch.sum(Normal(self.fc1.weight, self.sigma).log_prob(self.fc1.weight) \
                        + Normal(self.fc2.weight, self.sigma).log_prob(self.fc2.weight) \
                        + Normal(self.fc3.weight, self.sigma).log_prob(self.fc3.weight) \
                        + Normal(self.fc1.bias, self.sigma).log_prob(self.fc1.bias) \
                        + Normal(self.fc2.bias, self.sigma).log_prob(self.fc2.bias) \
                        + Normal(self.fc3.bias, self.sigma).log_prob(self.fc3.bias))

    def sample_elbo(self, x, y, num_samples=10):
        kl_divergence = 0
        log_likelihood = 0
        for i in range(num_samples):
            output = self(x)
            kl_divergence += (self.log_variational_posterior() - self.log_prior()) / num_samples
            log_likelihood += F.cross_entropy(output, y) / num_samples
        elbo = log_likelihood - kl_divergence
        return elbo

model = BayesianANN()
optimizer = Adam(model.parameters())

# Train model
for epoch in range(100):
    for x, y in train_loader:
        optimizer.zero_grad()
        elbo = -1 * model.sample_elbo(x, y)
        elbo.backward()
        optimizer.step()

# Evaluate model
accuracy = 0
with torch.no_grad():
    for x, y in test_loader:
        output = model(x)
        prediction = torch.argmax(output, dim=1)
        accuracy += torch.sum(prediction == y)
accuracy /= len(test_loader.dataset)
print(f'Test accuracy: {accuracy:.2f}%')

第四段

贝叶斯分析也被应用于信号处理、数据压缩、图像处理等领域。比如说,我们可以利用高斯过程贝叶斯优化来寻找最优化参数,以此提高模型的性能。

from bayesian_optimization import BayesianOptimization

# Define objective function
def func(x, y):
    return -1 * (x**2 + y**2)

# Define search space
pbounds = {'x': (-5, 5), 'y': (-5, 5)}

# Initialize optimizer
optimizer = BayesianOptimization(
    f=func,
    pbounds=pbounds,
    random_state=1,
)

# Optimize objective function
optimizer.maximize(init_points=5, n_iter=25)

# Print best parameters and result
print(optimizer.max)