Python中的贝叶斯分析是什么
更新时间:2024-01-22第一段
贝叶斯分析是一种基于贝叶斯定理的统计分析方法,主要用于数据分析、机器学习、人工智能等领域。其核心思想是从观察到的数据推断未知参数的概率分布,以此作为对未来事件的预测。
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import binom, beta
# Binomial distribution parameters
n = 100
p = 0.2
# Prior distribution parameters
a = 2
b = 2
# Generate data
data = binom.rvs(n, p, size=100)
# Posterior distribution parameters
post_a = a + np.sum(data)
post_b = b + n - np.sum(data)
# Plot prior and posterior distributions
x = np.linspace(0, 1, 100)
prior_dist = beta.pdf(x, a, b)
post_dist = beta.pdf(x, post_a, post_b)
plt.plot(x, prior_dist, label='Prior')
plt.plot(x, post_dist, label='Posterior')
plt.xlabel('p')
plt.ylabel('Density')
plt.legend()
plt.show()
第二段
贝叶斯分析的应用场景有很多,其中最常见的是分类、回归、聚类等任务。比如说,我们可以利用朴素贝叶斯分类器来区分垃圾邮件和正常邮件,其思路是从已知的垃圾邮件和正常邮件中,推断出一个概率分布函数,以此来对新的邮件进行分类。
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
# Load data
categories = ['alt.atheism', 'talk.religion.misc']
train = fetch_20newsgroups(subset='train', categories=categories)
test = fetch_20newsgroups(subset='test', categories=categories)
# Vectorize data
vectorizer = CountVectorizer()
train_data = vectorizer.fit_transform(train.data)
test_data = vectorizer.transform(test.data)
# Fit Naive Bayes classifier
clf = MultinomialNB()
clf.fit(train_data, train.target)
# Evaluate classifier
predictions = clf.predict(test_data)
print(classification_report(test.target, predictions))
第三段
贝叶斯分析在多元统计分析和深度学习中也得到了广泛应用。其中,在贝叶斯神经网络中,我们可以利用先验知识来调整网络参数,以此提高模型的泛化性能。
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.distributions import Normal
# Load and preprocess data
train_loader = DataLoader(...)
test_loader = DataLoader(...)
# Define model
class BayesianANN(torch.nn.Module):
def __init__(self):
super(BayesianANN, self).__init__()
self.fc1 = torch.nn.Linear(28*28, 128)
self.fc2 = torch.nn.Linear(128, 64)
self.fc3 = torch.nn.Linear(64, 10)
self.sigma = torch.nn.Parameter(torch.FloatTensor([1.0]))
def forward(self, x):
x = x.view(-1, 28*28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def log_prior(self):
return torch.sum(Normal(0, 1).log_prob(self.fc1.weight) \
+ Normal(0, 1).log_prob(self.fc2.weight) \
+ Normal(0, 1).log_prob(self.fc3.weight) \
+ Normal(0, 1).log_prob(self.fc1.bias) \
+ Normal(0, 1).log_prob(self.fc2.bias) \
+ Normal(0, 1).log_prob(self.fc3.bias))
def log_variational_posterior(self):
return torch.sum(Normal(self.fc1.weight, self.sigma).log_prob(self.fc1.weight) \
+ Normal(self.fc2.weight, self.sigma).log_prob(self.fc2.weight) \
+ Normal(self.fc3.weight, self.sigma).log_prob(self.fc3.weight) \
+ Normal(self.fc1.bias, self.sigma).log_prob(self.fc1.bias) \
+ Normal(self.fc2.bias, self.sigma).log_prob(self.fc2.bias) \
+ Normal(self.fc3.bias, self.sigma).log_prob(self.fc3.bias))
def sample_elbo(self, x, y, num_samples=10):
kl_divergence = 0
log_likelihood = 0
for i in range(num_samples):
output = self(x)
kl_divergence += (self.log_variational_posterior() - self.log_prior()) / num_samples
log_likelihood += F.cross_entropy(output, y) / num_samples
elbo = log_likelihood - kl_divergence
return elbo
model = BayesianANN()
optimizer = Adam(model.parameters())
# Train model
for epoch in range(100):
for x, y in train_loader:
optimizer.zero_grad()
elbo = -1 * model.sample_elbo(x, y)
elbo.backward()
optimizer.step()
# Evaluate model
accuracy = 0
with torch.no_grad():
for x, y in test_loader:
output = model(x)
prediction = torch.argmax(output, dim=1)
accuracy += torch.sum(prediction == y)
accuracy /= len(test_loader.dataset)
print(f'Test accuracy: {accuracy:.2f}%')
第四段
贝叶斯分析也被应用于信号处理、数据压缩、图像处理等领域。比如说,我们可以利用高斯过程贝叶斯优化来寻找最优化参数,以此提高模型的性能。
from bayesian_optimization import BayesianOptimization
# Define objective function
def func(x, y):
return -1 * (x**2 + y**2)
# Define search space
pbounds = {'x': (-5, 5), 'y': (-5, 5)}
# Initialize optimizer
optimizer = BayesianOptimization(
f=func,
pbounds=pbounds,
random_state=1,
)
# Optimize objective function
optimizer.maximize(init_points=5, n_iter=25)
# Print best parameters and result
print(optimizer.max)