c语言编程笔录

首页 >   > 笔记大全

笔记大全

学编程应该知道的c语言中的复数操作

更新时间:2023-10-27

1. 复数的定义与表示

复数是由实数和虚数构成的数。在C语言中,使用结构体来表示复数,一个复数结构体通常会包含两个成员变量——实部和虚部。


struct complex {
    double real; // 实部
    double imag; // 虚部
};

2. 实现复数的加减乘除

在C语言中,复数加、减、乘、除的运算可以通过对实部和虚部进行相应的算术操作实现。

复数加减法示例:

struct complex complex_add(struct complex a, struct complex b) {
    struct complex result;
    result.real = a.real + b.real;
    result.imag = a.imag + b.imag;
    return result;
}

struct complex complex_sub(struct complex a, struct complex b) {
    struct complex result;
    result.real = a.real - b.real;
    result.imag = a.imag - b.imag;
    return result;
}
复数乘法示例:

struct complex complex_mul(struct complex a, struct complex b) {
    struct complex result;
    result.real = a.real * b.real - a.imag * b.imag;
    result.imag = a.real * b.imag + a.imag * b.real;
    return result;
}
复数除法示例:

struct complex complex_div(struct complex a, struct complex b) {
    double divisor = b.real * b.real + b.imag * b.imag;
    struct complex result;
    result.real = (a.real * b.real + a.imag * b.imag) / divisor;
    result.imag = (a.imag * b.real - a.real * b.imag) / divisor;
    return result;
}

3. 实现复数的求模和实部、虚部取反

求模是指求出一个复数的长度,也称为模长或绝对值。实部和虚部的取反分别是指将实部和虚部取相反数。

求模示例:

double complex_abs(struct complex a) {
    return sqrt(a.real * a.real + a.imag * a.imag);
}
实部和虚部取反示例:

struct complex complex_real_neg(struct complex a) {
    struct complex result;
    result.real = -a.real;
    result.imag = a.imag;
    return result;
}

struct complex complex_imag_neg(struct complex a) {
    struct complex result;
    result.real = a.real;
    result.imag = -a.imag;
    return result;
}

4. 实现复数的指数、对数、幂和根

在C语言中,复数的指数、对数、幂和根等操作可以借助数学公式实现。

复数指数示例:

struct complex complex_exp(struct complex a) {
    struct complex result;
    result.real = exp(a.real) * cos(a.imag);
    result.imag = exp(a.real) * sin(a.imag);
    return result;
}
复数对数示例:

struct complex complex_log(struct complex a) {
    double r = complex_abs(a);
    double theta = atan2(a.imag, a.real); // atan2计算反正切值
    struct complex result;
    result.real = log(r);
    result.imag = theta;
    return result;
}
复数幂示例:

struct complex complex_pow(struct complex a, double b) {
    double r = pow(complex_abs(a), b);
    double theta = b * atan2(a.imag, a.real);
    struct complex result;
    result.real = r * cos(theta);
    result.imag = r * sin(theta);
    return result;
}
复数根示例:

struct complex complex_root(struct complex a, int k) {
    double r = pow(complex_abs(a), 1.0 / k);
    double theta = atan2(a.imag, a.real) / k;
    struct complex result;
    result.real = r * cos(theta);
    result.imag = r * sin(theta);
    return result;
}