介绍
Apache Hudi (Hadoop Upserts Deletes and Incrementals)是一款高效的数据管理框架,可用于大数据领域的数据湖管理,以及数据增量和删除操作的处理。而Alluxio则是一种快速数据访问和存储系统,允许将数据从不同的数据源汇总到一起,以便更高效地访问和处理数据。本文将介绍如何在Hudi中集成Alluxio,以便在处理大量数据时获得更好的性能。
准备工作
在集成Hudi和Alluxio之前,您需要先安装和配置它们。以下是在CentOS 7上安装和配置Alluxio的步骤:
#下载安装包并解压
wget https://downloads.alluxio.io/downloads/files/2.4.0/alluxio-2.4.0-bin.tar.gz
tar -xvf alluxio-2.4.0-bin.tar.gz
#配置环境变量
echo "export ALLUXIO_HOME=/opt/alluxio-2.4.0-bin" >> ~/.bashrc
echo "export PATH=$ALLUXIO_HOME/bin:$PATH" >> ~/.bashrc
#启动Alluxio
./bin/alluxio-start.sh local
集成Hudi和Alluxio
现在,您已经安装和配置了Alluxio,可以开始在Hudi中集成它。首先,您需要在Hudi的依赖项中添加Alluxio:
org.apache.hudi
hudi-all-common
0.8.0-incubating
org.apache.hudi
hudi-alluxio-bundle
0.8.0-incubating
然后,您需要在Hudi表的配置文件中添加Alluxio的配置信息。以下是一个示例配置文件:
{
"name": "my_hudi_table",
"type": "COPY_ON_WRITE",
"props": {
"hoodie.write.storage.type": "COPY_ON_WRITE",
"hoodie.compact.inline": "true",
"hoodie.datasource.hive_sync.enable": "false",
"hoodie.datasource.write.recordkey.field": "id",
"hoodie.datasource.write.partitionpath.field": "created_at",
"hoodie.table.name": "my_hudi_table",
"hoodie.datasource.write.keygenerator.class": "org.apache.hudi.keygen.SimpleKeyGenerator",
"hoodie.datasource.hive_sync.partition_extractor_class": "org.apache.hudi.hive.NonPartitionedExtractor",
"hoodie.datasource.hive_sync.jdbcurl": "jdbc:mysql://localhost:3306/hive",
"hoodie.datasource.hive_sync.username": "root",
"hoodie.datasource.hive_sync.password": "password",
"hoodie.datasource.hive_sync.database": "hive",
"hoodie.datasource.hive_sync.table": "my_hudi_table",
"hoodie.datasource.hive_sync.partition_fields": "",
"hoodie.datasource.hive_sync.partition_extractor": "org.apache.hudi.hive.NonPartitionedExtractor",
"hoodie.datasource.write.hive_style_partitioning": "false",
"hoodie.datasource.hive_sync.enable": "false",
"hoodie.datasource.alluxio.path": "/tmp/hudi/alluxio"
}
}
在上面的配置文件中,您需要将"hoodie.datasource.alluxio.path"的值设置为Alluxio的目录。
使用Alluxio
现在,您已经将Alluxio集成到Hudi中,可以开始在Hudi中使用它。以下是使用Alluxio存储数据的示例代码:
JavaRDD hoodieRecords;
Configuration hadoopConf = new Configuration();
HoodieWriteConfig config = HoodieWriteConfig.newBuilder()
.withPath("/tmp/hudi/test_table") // Hudi 表目录
.withSchema(SCHEMA) // Hudi 表模式
.withParallelism(2, 2) // 并行度
.withCompactionConfig(HoodieCompactionConfig.newBuilder().build()) // 合并配置
.withBulkInsertSortMode(BulkInsertSortMode.GLOBAL_SORT) // 排序方式
.forTable("test_table") // Hudi 表名称
.withIndexConfig(HoodieIndexConfig.newBuilder().build()) // 索引配置
.withStorageConfig(HoodieStorageConfig.newBuilder().build()) // 存储配置
.forTable("test_table")
.withEmbeddedTimelineServerEnabled(true)
.withFileSystemViewConfig(HoodieFileSystemViewConfig.newBuilder().withEnableReloadCache(true)
.withRetainMinuteTimeline(10).build())
.withMetricsConfig(metricsConfig)
.withConsistencyGuardConfig(ConsistencyGuardConfig.newBuilder()
.withConsistencyCheckEnabled(true)
.withInitialConsistencyCheck(false)
.build())
.withAutoCommit(false)
.withProps(props)
.withSparkConf(sparkConf)
.withHadoopConf(hadoopConf)
.withBulkInsertParallelism(10).build();
HoodieJavaWriter hoodieJavaWriter = new HoodieJavaWriter(config);
hoodieJavaWriter.withIndexWriter(new HoodieIndex(indexConfig, hadoopConf)).write(hoodieRecords, taskUUID);
当使用Alluxio时,只需将"hoodie.datasource.write.storage.type"的值设置为"Alluxio"即可:
"hoodie.datasource.write.storage.type": "alluxio"
总结
本文介绍了如何在Hudi中集成Alluxio以提高数据处理性能。首先,您需要在CentOS上安装和配置Alluxio,然后在Hudi依赖项中添加Alluxio依赖项,最后在Hudi表配置文件中添加Alluxio的配置信息。当使用Alluxio时,将"hoodie.datasource.write.storage.type"的值设置为"Alluxio"即可。结合这些步骤,您可以更加高效地管理,访问和处理大量数据。